336 research outputs found

    On Reducing the Effect of Covariate Factors in Gait Recognition: a Classifier Ensemble Method

    Get PDF
    Robust human gait recognition is challenging because of the presence of covariate factors such as carrying condition, clothing, walking surface, etc. In this paper, we model the effect of covariates as an unknown partial feature corruption problem. Since the locations of corruptions may differ for different query gaits, relevant features may become irrelevant when walking condition changes. In this case, it is difficult to train one fixed classifier that is robust to a large number of different covariates. To tackle this problem, we propose a classifier ensemble method based on the random subspace Method (RSM) and majority voting (MV). Its theoretical basis suggests it is insensitive to locations of corrupted features, and thus can generalize well to a large number of covariates. We also extend this method by proposing two strategies, i.e, local enhancing (LE) and hybrid decision-level fusion (HDF) to suppress the ratio of false votes to true votes (before MV). The performance of our approach is competitive against the most challenging covariates like clothing, walking surface, and elapsed time. We evaluate our method on the USF dataset and OU-ISIR-B dataset, and it has much higher performance than other state-of-the-art algorithms

    Analisis Kinerja Dinas Koperasi, Usaha Mikro, Kecil, dan Menengah Kota Pekanbaru (Studi Kasus Pelaksanaan Tugas Pokok dan Fungsi dalam Pembinaan Koperasi di Pekanbaru

    Full text link
    The Analysis Performance Department of Cooperatives, Micro,Small, and Medium Pekanbaru City (Case Study Implementation Duty andFunction in Development Cooperative in Pekanbaru). This study aims to analyzethe performance of the Department of Cooperatives Pekanbaru SMEs in theimplementation of the main tasks and functions of cooperative development. Theresearcher used quality research with data analys descriptively. In collecting thedata, the researcher user interview thecnique, observation, dan documentation.These results indicate that the performance of the Department of CooperativesSMEs in the implementation of Pekanbaru duties and functions of cooperativedevelopment is still less than optimal. Then there are factors that affectperformance are factors encountered in the field of human resources developmentand the factors that affect the performance of cooperatives CooperativesPekanbaru SMEs in the implementation of the tasks and functions of cooperativedevelopment.Keywords: Performance, Objectives, Standards, Feedback, equipment or meansof Competence, Motive, Opportunit

    Fingerprint recognition with embedded presentation attacks detection: are we ready?

    Get PDF
    The diffusion of fingerprint verification systems for security applications makes it urgent to investigate the embedding of software-based presentation attack detection algorithms (PAD) into such systems. Companies and institutions need to know whether such integration would make the system more “secure” and whether the technology available is ready, and, if so, at what operational working conditions. Despite significant improvements, especially by adopting deep learning approaches to fingerprint PAD, current research did not state much about their effectiveness when embedded in fingerprint verification systems. We believe that the lack of works is explained by the lack of instruments to investigate the problem, that is, modeling the cause-effect relationships when two non-zero error-free systems work together. Accordingly, this paper explores the fusion of PAD into verification systems by proposing a novel investigation instrument: a performance simulator based on the probabilistic modeling of the relationships among the Receiver Operating Characteristics (ROC) of the two individual systems when PAD and verification stages are implemented sequentially. As a matter of fact, this is the most straightforward, flexible, and widespread approach. We carry out simulations on the PAD algorithms’ ROCs submitted to the most recent editions of LivDet (2017-2019), the state-of-the-art NIST Bozorth3, and the top-level Veryfinger 12 matchers. Reported experiments explore significant scenarios to get the conditions under which fingerprint matching with embedded PAD can improve, rather than degrade, the overall personal verification performance

    Is Feature Selection Secure against Training Data Poisoning?

    Get PDF
    Learning in adversarial settings is becoming an important task for application domains where attackers may inject malicious data into the training set to subvert normal operation of data-driven technologies. Feature selection has been widely used in machine learning for security applications to improve generalization and computational efficiency, although it is not clear whether its use may be beneficial or even counterproductive when training data are poisoned by intelligent attackers. In this work, we shed light on this issue by providing a framework to investigate the robustness of popular feature selection methods, including LASSO, ridge regression and the elastic net. Our results on malware detection show that feature selection methods can be significantly compromised under attack (we can reduce LASSO to almost random choices of feature sets by careful insertion of less than 5% poisoned training samples), highlighting the need for specific countermeasures

    A Hybrid Training-Time and Run-Time Defense Against Adversarial Attacks in Modulation Classification

    Get PDF
    Motivated by the superior performance of deep learning in many applications including computer vision and natural language processing, several recent studies have focused on applying deep neural network for devising future generations of wireless networks. However, several recent works have pointed out that imperceptible and carefully designed adversarial examples (attacks) can significantly deteriorate the classification accuracy. In this letter, we investigate a defense mechanism based on both training-time and run-time defense techniques for protecting machine learning-based radio signal (modulation) classification against adversarial attacks. The training-time defense consists of adversarial training and label smoothing, while the run-time defense employs a support vector machine-based neural rejection (NR). Considering a white-box scenario and real datasets, we demonstrate that our proposed techniques outperform existing state-of-the-art technologies

    Empirical assessment of generating adversarial configurations for software product lines

    Get PDF
    Software product line (SPL) engineering allows the derivation of products tailored to stakeholders’ needs through the setting of a large number of configuration options. Unfortunately, options and their interactions create a huge configuration space which is either intractable or too costly to explore exhaustively. Instead of covering all products, machine learning (ML) approximates the set of acceptable products (e.g., successful builds, passing tests) out of a training set (a sample of configurations). However, ML techniques can make prediction errors yielding non-acceptable products wasting time, energy and other resources. We apply adversarial machine learning techniques to the world of SPLs and craft new configurations faking to be acceptable configurations but that are not and vice-versa. It allows to diagnose prediction errors and take appropriate actions. We develop two adversarial configuration generators on top of state-of-the-art attack algorithms and capable of synthesizing configurations that are both adversarial and conform to logical constraints. We empirically assess our generators within two case studies: an industrial video synthesizer (MOTIV) and an industry-strength, open-source Web-app configurator (JHipster). For the two cases, our attacks yield (up to) a 100% misclassification rate without sacrificing the logical validity of adversarial configurations. This work lays the foundations of a quality assurance framework for ML-based SPLs

    ImageNet-Patch: A dataset for benchmarking machine learning robustness against adversarial patches

    Get PDF
    Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding, and requires careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. The dataset is built by first optimizing a set of adversarial patches against an ensemble of models, using a state-of-the-art attack that creates transferable patches. The corresponding patches are then randomly rotated and translated, and finally applied to the ImageNet data. We use ImageNet-Patch to benchmark the robustness of 127 models against patch attacks, and also validate the effectiveness of the given patches in the physical domain (i.e., by printing and applying them to real-world objects). We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our methodology can be generalized to other domains. We open source our dataset and evaluation code at https://github.com/pralab/ImageNet-Patch

    Analysis of Score-Level Fusion Rules for Deepfake Detection

    Get PDF
    Deepfake detection is of fundamental importance to preserve the reliability of multimedia communications. Modern deepfake detection systems are often specialized on one or more types of manipulation but are not able to generalize. On the other hand, when properly designed, ensemble learning and fusion techniques can reduce this issue. In this paper, we exploit the complementarity of different individual classifiers and evaluate which fusion rules are best suited to increase the generalization capacity of modern deepfake detection systems. We also give some insights to designers for selecting the most appropriate approach

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future
    corecore